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Note: this is only a draft of the problems discussed on Tuesday and might contain some typos or more or less
imprecise statements. If you find some, please let me know.

1 Asymptotic Efficiency

1.1 Brief Recap

Model:

y = Xβ0 + u,

E[uTu] = σ2
0I,

plim
[
n−1XTu

]
6= 0.

Instruments: available l ≥ k, i.e. a matrix W with dimension n × l (overidentification). We need to have k
instruments, given by the matrix W̃ , such that

plim
[
n−1W̃W̃Tu

]
= 0, (validity)

plim
[
n−1W̃TX

]
= SW̃X , (relevance)

plim
[
n−1W̃

]
= SW̃W̃ , (technicality)

with rank(SW̃X) = k = rank(SW̃W̃ ) (finite, full rank).

1.2 Optimal instruments

How to get W̃? Use a selection matrix J , such that

W̃ = WJ.

to minimize the asymptotic variance of

β̂IV =
(
(WJ)TX

)−1
(WJ)T y

= β0 +
(
(WJ)TX

)−1
(WJ)Tu.

This gives us the following convenient expression for deriving asymptotic distribution

√
n
(
β̂IV − β0

)
=

(
1

n
(WJ)TX

)
︸ ︷︷ ︸

(?)

−1(
1√
n

(WJ)Tu

)
︸ ︷︷ ︸

(??)

.

We have

(?)
p→ S−1

WX , (Slutsky),

(??)
d→ N

(
0, σ2

0SWJWJ

)
, (CLT & MW),
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where

SWJWJ = plim
[
n−1(WJ)TWJ

]
,

SWJX = plim
[
n−1(WJ)TX

]
Recall the Cremér’s Theorem, which deals with a linear transformation of a normal variate zn. If

√
n (zn − µ)

d→ N (0,Σ) , (K × 1)

Hn
p→ H, (K × J),

then √
nHT

n (zn − µ)
d→ N

(
0, HT ΣH

)
.

Then, by this theorem

√
n
(
β̂IV − β0

)
d→ N

(
0, σ2

0S
−1
WJXSWJWJ

(
S−1
WJX

)T︸ ︷︷ ︸
AVar

)
.

Hence, we have obtained the asymptotic covariance matrix in a sandwich form:

AVar(WJ) = σ2
0S

−1
WJXSWJWJ

(
S−1
WJX

)T
(1)

= σ2
0plim

[
n−1XTPWJX

]−1
, (2)

with the precision matrix corresponding to (2)

σ2
0plim

[
n−1XTPWJX

]
,

To get the optimal J , we need to eliminate the sandwich in (1). And to achieve this, we need

SWJWJ = SWJX ,

plim
[
n−1(WJ)TWJ

]
= plim

[
n−1XTWJ

]
,

(WJ)TWJ = XTWJ,

JTWTW = XTW,

JT = XTW (WTW )−1,

J = (WTW )−1WTX︸ ︷︷ ︸
Optimal choice

. (3)

Notice, that under this optimal choice (3)

WJ = W (WTW )−1WTX

= PWX,

so that the required instrument selection W̃ = WJ is just a projection of X on the span of W . Then, the
asymptotic variance takes the form

AVar(PWX) = σ2
0

(
plim

[
n−1XTPPWXX

])−1
. (4)

Recall, however, that

PPWX = PWX
(
(PWX)TPWX

)−1
(PWX)T

= PW ,

so that (4) becomes

AVar(W ) = σ2
0

(
plim

[
n−1XTPWX

])−1
. (5)
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1.3 Asymptotic efficiency

Summing up: with an arbitrary selection matrix J the asymptotic covariance matrix is given by (2), while
with the optimal selection matrix, equal to (3), it is given by (5). To show asymptotic efficiency of the IV
estimator derived with the optimally selected instruments, we need to show that the difference between the
asymptotic variance matrices of the non-optimal and of the optimal estimator, i.e.

AVar(WJ)−AVar(PWX) > 0,

is positive semidefinite (PSD).

From Exercise 3.8 we know that the matrix(
XTPWJX

)−1 −
(
XTPWX

)−1

is positive definite (PD) iff the matrix
XTPWX −XTPWJX

is PD, which holds true also for the PSD case. Hence, to show the required result we can work with the
expression without matrix inverses

XTPWX −XTPWJX,

which is proportional to the difference between the two precision matrices (with plim’s and n’s dropped).

Since J is a selection matrix, lin(WJ) ⊂ lin(W ), so that PW is a matrix of a projection on a bigger subspace
then in the case of PWJ . Hence,

PWJ = PWJPW = PWPWJ ,

so that

XTPWX −XTPWJX = XT (PW − PWJ)X

= XT (PW − PWWJPW )X

= XTPW (I− PWJ)︸ ︷︷ ︸
MWJ

PWX

= XTPWMWJPWX

where MWJ is an orthogonal projection matrix. This means that, indeed,

XTPWX −XTPWJX

is PSD, which implies that

AVar(WJ)−AVar(W )

is a positive semidefinite matrix.

Conclusion: W̃ = PWX is the optimal choice of instrumental variables by the criterion of asymptotic variance,
leading o an asymptotically efficient GIV estimator.

However, an efficiency gain is potentially available if the space spanned by the columns of W is made larger, i.e.
by adding extra instruments. As we will show below, appending new columns to W will reduce the asymptotic
covariance matrix.

1.4 Ex. DM 8.8

Suppose that W1 and W2 are, respectively, n × l1 and n × l2 matrices of instruments, and that W2 consists of
W1 plus l2 − l1 additional columns. Prove that the generalized IV estimator using W2 is asymptotically more
efficient than the generalized IV estimator using W1. To do this, you need to show that the matrix(

XTPW1
X
)−1 −

(
XTPW2

X
)−1

is PSD. Hint: see Exercise 3.8.
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Exactly as we have done above, we use Exercise 3.8 to argue that the matrix
(
XTPW1X

)−1−
(
XTPW2X

)−1
is

PSD iff the matrix XTPW2
X −XTPW1

X is PSD, and we work with the expression without matrix inverses

XTPW2X −XTPW1X. (6)

Notice that lin(W1) ⊂ lin(W2), because
X2 = [X1, X∗] ,

where W∗ is some set of instruments, different than W1, of dimension n× (l2 − l1). Thus,

PW1
PW2

= PW2
PW1

= PW1
.

Hence, (6) can be rewritten as follows

XTPW2X −XTPW1X = XT (PW2 − PW1)X

= XT (PW2
− PW2

PW1
PW2

)X

= XTPW2
(I− PW1

)︸ ︷︷ ︸
MW1

PW2X

= XTPW2MW1PW2X, (7)

which is PSD since MW1
is an orthogonal projection matrix. To finish the exercise, divide (7) by n and let n

go to infinity.

Conclusion: including of more instruments increases the efficiency.

2 Identifiability and Consistency

2.1 Criterion function

OLS: Q(β, y) = (y −Xβ)
T

(y −Xβ) ,

GIV: Q(β, y) = (y −Xβ)
T
PW (y −Xβ) .

The former is simply the SSR. The latter can be expressed as

Q(β, y) = yTPW y + βTXTPWXβ − 2βTXTPW y,

which minimised wrt β yields the following FOC

2XTPWXβ − 2XTPW y = 0.

The solution to this problem is

β̂IV =
(
XTPWX

)−1
XTPW y, (8.29)

the generalized IV estimator, which is a generalisation of the simple IV estimator

β̂IV =
(
WTX

)−1
WT y, (8.12)

2.2 Identification

Identification condition:

plim
[
n−1Q(β, y)

]{= 0, if β = β0,

> 0, if β 6= β0,

i.e. the plim the IV criterion function divided by n has a unique global minimum at β = β0
1.

1Cf. Exercise DM 8.5.
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The asymptotic identification condition:

• the simple IV estimator

SWX ≡ plim
[
n−1WTX

]
is deterministic and non-singular, (8.14)

• the general IV estimator

SXW (SWW )
−1
SWX has a full rank. (8)

2.3 Consistency

The consistency condition:

plim
[
n−1WTu

]
= 0, (8.16)

Under the key assumption (8.16), the two asymptotic identification conditions are sufficient for consistency.

2.4 Ex. DM 8.6

Under assumption (8.16) and the asymptotic identification condition that SXW (SWW )
−1
SWX has full rank,

show that the GIV estimator β̂IV is consistent by explicitly computing the probability limit of the estimator for
a DGP such that y = Xβ0 + u.

The GIV estimator is given by

β̂IV =
(
XTPWX

)−1
XTPW y

=
(
XTPWX

)−1
XTPW (Xβ0 + u)

=
(
XTW

(
WTW

)−1
WTX

)−1

XTW
(
WTW

)−1
WT (Xβ0 + u)

= β0 +
(
XTW

(
WTW

)−1
WTX

)−1

XTW
(
WTW

)−1
WTu︸ ︷︷ ︸

(∗)

,

since PW = W
(
WTW

)−1
WT .

Consider (∗). Its plim stays the same if we divide by n all the subsequent “blocks” i.e. XTW , WTW , WTW

and WTu. Then, each factor has a deterministic plim and the plim of β̂IV becomes

plim
[
β̂IV

]
= plim [β0] + plim

[
(∗)
]

= β0 +
(
SXW (SWW )

−1
SWX

)
︸ ︷︷ ︸

(∗∗)

−1

SXW (SWW )
−1 · plim

[
n−1WTu

]︸ ︷︷ ︸
(∗∗∗)

.

Condition (8) guarantees that (∗∗) is non-singular, while assumption (8.16) that (∗∗∗) is a zero vector. Therefore,
these two conditions indeed lead to

plim
[
β̂IV

]
= β0,

which means that the GIV estimator consistent.
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